AE 10: Scraping multiple pages of articles from the Cornell Review

Suggested answers

Application exercise
Answers
Modified

October 8, 2024

Packages

We will use the following packages in this application exercise.

  • tidyverse: For data import, wrangling, and visualization.
  • rvest: For scraping HTML files.
  • robotstxt: For verifying if we can scrape a website.

Part 1 - Data scraping

See the code below stored in iterate-cornell-review.R.

# load packages
library(tidyverse)
library(rvest)
library(robotstxt)

# check that we can scrape data from the cornell review
paths_allowed("https://www.thecornellreview.org/")

# read the first page
page <- read_html("https://www.thecornellreview.org/")

# extract desired components
titles <- html_elements(x = page, css = "#main .read-title a") |>
  html_text2()

authors <- html_elements(x = page, css = "#main .byline a") |>
  html_text2()

article_dates <- html_elements(x = page, css = "#main .posts-date") |>
  html_text2()

topics <- html_elements(x = page, css = "#main .cat-links") |>
  html_text2()

abstracts <- html_elements(x = page, css = ".post-description") |>
  html_text2()

post_urls <- html_elements(x = page, css = ".aft-readmore") |>
  html_attr(name = "href")

# create a tibble with this data
review_raw <- tibble(
  title = titles,
  author = authors,
  date = article_dates,
  topic = topics,
  description = abstracts,
  url = post_urls
)

# clean up the data
review <- review_raw |>
  mutate(
    date = mdy(date),
    description = str_remove(string = description, pattern = "\nRead More")
  )

######## write a for loop to scrape the first 10 pages
scrape_results <- vector(mode = "list", length = 10)

for(page_num in 1:length(scrape_results)) {
  # print a message to keep track of where we are in the iteration
  message(str_glue("Scraping page {page_num}"))

  # pause for a couple of seconds to prevent rapid HTTP requests
  Sys.sleep(2)

  # create url
  url <- str_glue("https://www.thecornellreview.org/page/{page_num}/")

  # read the first page
  page <- read_html(url)

  # extract desired components
  titles <- html_elements(x = page, css = "#main .read-title a") |>
    html_text2()

  authors <- html_elements(x = page, css = "#main .byline a") |>
    html_text2()

  article_dates <- html_elements(x = page, css = "#main .posts-date") |>
    html_text2()

  topics <- html_elements(x = page, css = "#main .cat-links") |>
    html_text2()

  abstracts <- html_elements(x = page, css = ".post-description") |>
    html_text2()

  post_urls <- html_elements(x = page, css = ".aft-readmore") |>
    html_attr(name = "href")

  # create a tibble with this data
  review_raw <- tibble(
    title = titles,
    author = authors,
    date = article_dates,
    topic = topics,
    description = abstracts,
    url = post_urls
  )

  # clean up the data
  review <- review_raw |>
    mutate(
      date = mdy(date),
      description = str_remove(string = description, pattern = "\nRead More")
    )

  # store in list output
  scrape_results[[page_num]] <- review
}

# collapse list of data frames to a single data frame
scrape_df <- list_rbind(x = scrape_results)

######## write a function to scrape a single page and use a map() function
######## to iterate over the first ten pages
# convert to a function
scrape_review <- function(url){
  # pause for a couple of seconds to prevent rapid HTTP requests
  Sys.sleep(2)

  # read the first page
  page <- read_html(url)

  # extract desired components
  titles <- html_elements(x = page, css = "#main .read-title a") |>
    html_text2()

  authors <- html_elements(x = page, css = "#main .byline a") |>
    html_text2()

  article_dates <- html_elements(x = page, css = "#main .posts-date") |>
    html_text2()

  topics <- html_elements(x = page, css = "#main .cat-links") |>
    html_text2()

  abstracts <- html_elements(x = page, css = ".post-description") |>
    html_text2()

  post_urls <- html_elements(x = page, css = ".aft-readmore") |>
    html_attr(name = "href")

  # create a tibble with this data
  review_raw <- tibble(
    title = titles,
    author = authors,
    date = article_dates,
    topic = topics,
    description = abstracts,
    url = post_urls
  )

  # clean up the data
  review <- review_raw |>
    mutate(
      date = mdy(date),
      description = str_remove(string = description, pattern = "\nRead More")
    )

  # export the resulting data frame
  return(review)
}

# test function
## page 1
scrape_review(url = "https://www.thecornellreview.org/page/1/")

## page 2
scrape_review(url = "https://www.thecornellreview.org/page/2/")

## page 3
scrape_review(url = "https://www.thecornellreview.org/page/3/")

# create a vector of URLs
page_nums <- 1:10
cr_urls <- str_glue("https://www.thecornellreview.org/page/{page_nums}/")
cr_urls

# map function over URLs
cr_reviews <- map(.x = cr_urls, .f = scrape_review, .progress = TRUE) |>
  list_rbind()

# write data
write_csv(x = cr_reviews, file = "data/cornell-review-all.csv")

Part 2 - Data analysis

Demo: Import the scraped data set.

cr_reviews <- read_csv(file = "data/cornell-review-all.csv")
Rows: 100 Columns: 6
── Column specification ────────────────────────────────────────────────────────
Delimiter: ","
chr  (5): title, author, topic, description, url
date (1): date

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cr_reviews
# A tibble: 100 × 6
   title                               author date       topic description url  
   <chr>                               <chr>  <date>     <chr> <chr>       <chr>
 1 Playing the Race Card               Revie… 2024-10-07 "Cam… CML and BS… http…
 2 Should Joel Malina Be Fired?        Revie… 2024-10-07 "Bey… Cornell’s … http…
 3 Cornell Drops in 2025 FIRE Free Sp… Revie… 2024-10-03 "Cam… Each year,… http…
 4 Interim Expressive Activity Policy… Revie… 2024-10-02 "Cor… On October… http…
 5 Daryl Davis To Speak on Race Relat… Revie… 2024-10-01 "Cam… Daryl Davi… http…
 6 Happy 100th Birthday, President Ca… Revie… 2024-10-01 "Bey… President … http…
 7 Kavita Bala Named Cornell Provost   Revie… 2024-09-25 "Cam… On Septemb… http…
 8 Ithaca Labor News                   Revie… 2024-09-25 "Ith… Here are t… http…
 9 CML Realizes It Overstepped Social… Revie… 2024-09-25 "Cam… On Wednesd… http…
10 Cornell Republicans to Host Ben Sh… Revie… 2024-09-24 "Ith… On Monday,… http…
# ℹ 90 more rows

Demo: Who are the most prolific authors?

cr_reviews |>
  # adjust order of authors so they appear from most to least frequent
  mutate(author = fct_infreq(f = author) |>
    fct_rev()) |>
  # horizontal bar chart
  ggplot(mapping = aes(y = author)) +
  geom_bar()

Demo: What topics does The Cornell Review write about?

# basic bar plot
ggplot(data = cr_reviews, mapping = aes(y = topic)) +
  geom_bar()

Not super helpful. Each article can have multiple topics. What is the syntax for this column?

cr_reviews |>
  select(topic)
# A tibble: 100 × 1
   topic                                  
   <chr>                                  
 1 "Campus"                               
 2 "Beyond Cayuga's Waters"               
 3 "Campus"                               
 4 "Cornell Politics"                     
 5 "Campus"                               
 6 "Beyond Cayuga's Waters\nUncategorized"
 7 "Campus"                               
 8 "Ithaca"                               
 9 "Campus"                               
10 "Ithaca\nPolitics"                     
# ℹ 90 more rows

Each topic is separated by a "\n". Since the number of topics varies for each article, we should separate_longer_delim() this column. Instead we can use a stringr function to split them into distinct character strings.

cr_reviews |>
  separate_longer_delim(
    cols = topic,
    delim = "\n"
  )
# A tibble: 133 × 6
   title                               author date       topic description url  
   <chr>                               <chr>  <date>     <chr> <chr>       <chr>
 1 Playing the Race Card               Revie… 2024-10-07 Camp… CML and BS… http…
 2 Should Joel Malina Be Fired?        Revie… 2024-10-07 Beyo… Cornell’s … http…
 3 Cornell Drops in 2025 FIRE Free Sp… Revie… 2024-10-03 Camp… Each year,… http…
 4 Interim Expressive Activity Policy… Revie… 2024-10-02 Corn… On October… http…
 5 Daryl Davis To Speak on Race Relat… Revie… 2024-10-01 Camp… Daryl Davi… http…
 6 Happy 100th Birthday, President Ca… Revie… 2024-10-01 Beyo… President … http…
 7 Happy 100th Birthday, President Ca… Revie… 2024-10-01 Unca… President … http…
 8 Kavita Bala Named Cornell Provost   Revie… 2024-09-25 Camp… On Septemb… http…
 9 Ithaca Labor News                   Revie… 2024-09-25 Itha… Here are t… http…
10 CML Realizes It Overstepped Social… Revie… 2024-09-25 Camp… On Wednesd… http…
# ℹ 123 more rows

Notice the data frame now has additional rows. The unit of analysis is now an article-topic combination, rather than one-row-per-article. Not entirely a tidy structure, but necessary to construct a chart to visualize topic frequency.

cr_reviews |>
  separate_longer_delim(
    cols = topic,
    delim = "\n"
  ) |>
  ggplot(mapping = aes(y = topic)) +
  geom_bar()

Let’s clean this up like the previous chart.

cr_reviews |>
  separate_longer_delim(
    cols = topic,
    delim = "\n"
  ) |>
  mutate(topic = fct_infreq(f = topic) |>
    fct_rev()) |>
  ggplot(mapping = aes(y = topic)) +
  geom_bar()

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.4.1 (2024-06-14)
 os       macOS Sonoma 14.6.1
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/New_York
 date     2024-10-09
 pandoc   3.4 @ /usr/local/bin/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 ! package     * version    date (UTC) lib source
 P bit           4.0.5      2022-11-15 [?] CRAN (R 4.3.0)
 P bit64         4.0.5      2020-08-30 [?] CRAN (R 4.3.0)
   cli           3.6.3      2024-06-21 [1] RSPM (R 4.4.0)
 P colorspace    2.1-0      2023-01-23 [?] CRAN (R 4.3.0)
 P crayon        1.5.3      2024-06-20 [?] CRAN (R 4.4.0)
 P digest        0.6.35     2024-03-11 [?] CRAN (R 4.3.1)
 P dplyr       * 1.1.4      2023-11-17 [?] CRAN (R 4.3.1)
 P evaluate      0.24.0     2024-06-10 [?] CRAN (R 4.4.0)
 P fansi         1.0.6      2023-12-08 [?] CRAN (R 4.3.1)
 P farver        2.1.2      2024-05-13 [?] CRAN (R 4.3.3)
 P fastmap       1.2.0      2024-05-15 [?] CRAN (R 4.4.0)
 P forcats     * 1.0.0      2023-01-29 [?] CRAN (R 4.3.0)
 P generics      0.1.3      2022-07-05 [?] CRAN (R 4.3.0)
 P ggplot2     * 3.5.1      2024-04-23 [?] CRAN (R 4.3.1)
 P glue          1.7.0      2024-01-09 [?] CRAN (R 4.3.1)
 P gtable        0.3.5      2024-04-22 [?] CRAN (R 4.3.1)
 P here          1.0.1      2020-12-13 [?] CRAN (R 4.3.0)
 P hms           1.1.3      2023-03-21 [?] CRAN (R 4.3.0)
 P htmltools     0.5.8.1    2024-04-04 [?] CRAN (R 4.3.1)
 P htmlwidgets   1.6.4      2023-12-06 [?] CRAN (R 4.3.1)
 P httr          1.4.7      2023-08-15 [?] CRAN (R 4.3.0)
 P jsonlite      1.8.8      2023-12-04 [?] CRAN (R 4.3.1)
 P knitr         1.47       2024-05-29 [?] CRAN (R 4.4.0)
 P labeling      0.4.3      2023-08-29 [?] CRAN (R 4.3.0)
 P lifecycle     1.0.4      2023-11-07 [?] CRAN (R 4.3.1)
 P lubridate   * 1.9.3      2023-09-27 [?] CRAN (R 4.3.1)
 P magrittr      2.0.3      2022-03-30 [?] CRAN (R 4.3.0)
 P munsell       0.5.1      2024-04-01 [?] CRAN (R 4.3.1)
 P pillar        1.9.0      2023-03-22 [?] CRAN (R 4.3.0)
 P pkgconfig     2.0.3      2019-09-22 [?] CRAN (R 4.3.0)
 P purrr       * 1.0.2      2023-08-10 [?] CRAN (R 4.3.0)
 P R6            2.5.1      2021-08-19 [?] CRAN (R 4.3.0)
 P readr       * 2.1.5      2024-01-10 [?] CRAN (R 4.3.1)
   renv          1.0.7      2024-04-11 [1] CRAN (R 4.4.0)
 P rlang         1.1.4      2024-06-04 [?] CRAN (R 4.3.3)
 P rmarkdown     2.27       2024-05-17 [?] CRAN (R 4.4.0)
 P robotstxt   * 0.7.13     2020-09-03 [?] RSPM
 P rprojroot     2.0.4      2023-11-05 [?] CRAN (R 4.3.1)
 P rstudioapi    0.16.0     2024-03-24 [?] CRAN (R 4.3.1)
 P rvest       * 1.0.4      2024-02-12 [?] CRAN (R 4.3.1)
 P scales        1.3.0.9000 2024-05-07 [?] Github (r-lib/scales@c0f79d3)
 P sessioninfo   1.2.2      2021-12-06 [?] CRAN (R 4.3.0)
 P stringi       1.8.4      2024-05-06 [?] CRAN (R 4.3.1)
 P stringr     * 1.5.1      2023-11-14 [?] CRAN (R 4.3.1)
 P tibble      * 3.2.1      2023-03-20 [?] CRAN (R 4.3.0)
 P tidyr       * 1.3.1      2024-01-24 [?] CRAN (R 4.3.1)
 P tidyselect    1.2.1      2024-03-11 [?] CRAN (R 4.3.1)
 P tidyverse   * 2.0.0      2023-02-22 [?] CRAN (R 4.3.0)
 P timechange    0.3.0      2024-01-18 [?] CRAN (R 4.3.1)
 P tzdb          0.4.0      2023-05-12 [?] CRAN (R 4.3.0)
 P utf8          1.2.4      2023-10-22 [?] CRAN (R 4.3.1)
 P vctrs         0.6.5      2023-12-01 [?] CRAN (R 4.3.1)
 P vroom         1.6.5      2023-12-05 [?] CRAN (R 4.3.1)
   withr         3.0.1      2024-07-31 [1] RSPM (R 4.4.0)
 P xfun          0.45       2024-06-16 [?] CRAN (R 4.4.0)
 P xml2          1.3.6      2023-12-04 [?] CRAN (R 4.3.1)
 P yaml          2.3.8      2023-12-11 [?] CRAN (R 4.3.1)

 [1] /Users/soltoffbc/Projects/info-5001/course-site/renv/library/macos/R-4.4/aarch64-apple-darwin20
 [2] /Users/soltoffbc/Library/Caches/org.R-project.R/R/renv/sandbox/macos/R-4.4/aarch64-apple-darwin20/f7156815

 P ── Loaded and on-disk path mismatch.

──────────────────────────────────────────────────────────────────────────────