Slay: Predicting song artist based on lyrics

Suggested answers

Application exercise
Answers
library(tidyverse)
library(tidymodels)
library(stringr)
library(textrecipes)
library(themis)
library(vip)

# set seed for randomization
set.seed(123)

theme_set(theme_minimal(base_size = 13))

Import data

lyrics <- read_csv(file = "data/beyonce-swift-lyrics.csv") |>
  mutate(artist = factor(artist))
lyrics
# A tibble: 309 × 19
   album_name track_number track_name artist lyrics danceability energy loudness
   <chr>             <dbl> <chr>      <fct>  <chr>         <dbl>  <dbl>    <dbl>
 1 RENAISSAN…            1 I'M THAT … Beyon… "Plea…        0.554  0.535    -8.96
 2 RENAISSAN…            2 COZY       Beyon… "This…        0.556  0.63     -8.15
 3 RENAISSAN…            3 ALIEN SUP… Beyon… "Plea…        0.545  0.641    -6.40
 4 RENAISSAN…            4 CUFF IT    Beyon… "I fe…        0.78   0.689    -5.67
 5 RENAISSAN…            5 ENERGY (f… Beyon… "On s…        0.903  0.519    -9.15
 6 RENAISSAN…            6 BREAK MY … Beyon… "I'm …        0.693  0.887    -5.04
 7 RENAISSAN…            7 CHURCH GI… Beyon… "(Lor…        0.792  0.919    -5.69
 8 RENAISSAN…            8 PLASTIC O… Beyon… "Boy,…        0.618  0.712    -8.25
 9 RENAISSAN…            9 VIRGO'S G… Beyon… "Baby…        0.683  0.85     -5.04
10 RENAISSAN…           10 MOVE (fea… Beyon… "Move…        0.876  0.628    -6.60
# ℹ 299 more rows
# ℹ 11 more variables: speechiness <dbl>, acousticness <dbl>,
#   instrumentalness <dbl>, liveness <dbl>, valence <dbl>, tempo <dbl>,
#   time_signature <dbl>, duration_ms <dbl>, explicit <lgl>, key_name <chr>,
#   mode_name <chr>

Split the data into analysis/assessment/test sets

Your turn:

  • Split the data into training/test sets with 75% allocated for training
  • Split the training set into 10 cross-validation folds
# split into training/testing
set.seed(123)
lyrics_split <- initial_split(data = lyrics, strata = artist, prop = 0.75)

lyrics_train <- training(lyrics_split)
lyrics_test <- testing(lyrics_split)

# create cross-validation folds
lyrics_folds <- vfold_cv(data = lyrics_train, strata = artist)

Estimate the null model for a baseline comparison

Your turn: Estimate a null model to determine an appropriate baseline for evaluating a model’s performance.

null_spec <- null_model() |>
  set_engine("parsnip") |>
  set_mode("classification")

null_spec |>
  fit_resamples(
    artist ~ .,
    resamples = lyrics_folds
  ) |>
  collect_metrics()
# A tibble: 2 × 6
  .metric  .estimator  mean     n std_err .config             
  <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
1 accuracy binary     0.662    10 0.00385 Preprocessor1_Model1
2 roc_auc  binary     0.5      10 0       Preprocessor1_Model1

Fit a random forest model

Define the feature engineering recipe

Demonstration:

  • Define a feature engineering recipe to predict the song’s artist as a function of the lyrics + audio features
  • Exclude the ID variables from the recipe
  • Tokenize the song lyrics
  • Remove stop words
  • Only keep the 500 most frequently appearing tokens
  • Calculate tf-idf scores for the remaining tokens
    • This will generate one column for every token. Each column will have the standardized name tfidf_lyrics_* where * is the specific token. Instead we would prefer the column names simply be *. You can remove the tfidf_lyrics_ prefix using

      # Simplify these names
      step_rename_at(starts_with("tfidf_lyrics_"),
        fn = \(x) str_replace_all(
          string = x,
          pattern = "tfidf_lyrics_",
          replacement = ""
        )
      )
    • This does cause a conflict between the energy audio feature and the token energy. We will add a prefix to the audio features to avoid this conflict.

      # Simplify these names
      step_rename_at(
        all_predictors(), -starts_with("tfidf_lyrics_"),
        fn = \(x) str_glue("af_{x}")
      )
  • Downsample the observations so there are an equal number of songs by Beyoncé and Taylor Swift in the analysis set
# define preprocessing recipe
lyrics_rec <- recipe(artist ~ ., data = lyrics_train) |>
  # exclude ID variables
  update_role(album_name, track_number, track_name, new_role = "id vars") |>
  step_tokenize(lyrics) |>
  step_stopwords(lyrics) |>
  step_tokenfilter(lyrics, max_tokens = 500) |>
  step_tfidf(lyrics) |>
  # Simplify these names
  step_rename_at(
    all_predictors(), -starts_with("tfidf_lyrics_"),
    fn = \(x) str_glue("af_{x}")
  ) |>
  step_rename_at(starts_with("tfidf_lyrics_"),
    fn = \(x) str_replace_all(
      string = x,
      pattern = "tfidf_lyrics_",
      replacement = ""
    )
  ) |>
  step_downsample(artist)
lyrics_rec

Fit the model

Demonstration:

  • Define a random forest model grown with 1000 trees using the ranger engine.
  • Define a workflow using the feature engineering recipe and random forest model specification. Fit the workflow using the cross-validation folds.
    • Use control = control_resamples(save_pred = TRUE) to save the assessment set predictions. We need these to assess the model’s performance.
# define the model specification
ranger_spec <- rand_forest(trees = 1000) |>
  set_mode("classification") |>
  # calculate feature importance metrics using the ranger engine
  set_engine("ranger", importance = "permutation")

# define the workflow
ranger_workflow <- workflow() |>
  add_recipe(lyrics_rec) |>
  add_model(ranger_spec)

# fit the model to each of the cross-validation folds
ranger_cv <- ranger_workflow |>
  fit_resamples(
    resamples = lyrics_folds,
    control = control_resamples(save_pred = TRUE, save_workflow = TRUE)
  )

Evaluate model performance

Demonstration:

  • Calculate the model’s accuracy and ROC AUC. How did it perform?
  • Draw the ROC curve for each validation fold
  • Generate the resampled confusion matrix for the model and draw it using a heatmap. How does the model perform predicting Beyoncé songs relative to Taylor Swift songs?
# extract metrics and predictions
ranger_cv_metrics <- collect_metrics(ranger_cv)
ranger_cv_predictions <- collect_predictions(ranger_cv)

# how well did the model perform?
ranger_cv_metrics
# A tibble: 2 × 6
  .metric  .estimator  mean     n std_err .config             
  <chr>    <chr>      <dbl> <int>   <dbl> <chr>               
1 accuracy binary     0.858    10  0.0250 Preprocessor1_Model1
2 roc_auc  binary     0.929    10  0.0180 Preprocessor1_Model1
# roc curve
ranger_cv_predictions |>
  group_by(id) |>
  roc_curve(truth = artist, .pred_Beyoncé) |>
  autoplot()

# confusion matrix
conf_mat_resampled(x = ranger_cv, tidy = FALSE) |>
  autoplot(type = "heatmap")

Penalized regression

Define the feature engineering recipe

Demonstration:

  • Define a feature engineering recipe to predict the song’s artist as a function of the lyrics + audio features
  • Exclude the ID variables from the recipe
  • Tokenize the song lyrics
  • Calculate all possible 1-grams, 2-grams, 3-grams, 4-grams, and 5-grams
  • Remove stop words
  • Only keep the 2000 most frequently appearing tokens
  • Calculate tf-idf scores for the remaining tokens
  • Rename audio feature and tf-idf as before
  • Apply required steps for penalized regression models
    • Convert the explicit variable to a factor
    • Convert nominal predictors to dummy variables
    • Get rid of zero-variance predictors
    • Normalize all predictors to mean of 0 and variance of 1
  • Downsample the observations so there are an equal number of songs by Beyoncé and Taylor Swift in the analysis set
glmnet_rec <- recipe(artist ~ ., data = lyrics_train) |>
  # exclude ID variables
  update_role(album_name, track_number, track_name, new_role = "id vars") |>
  # tokenize and prep lyrics
  step_tokenize(lyrics) |>
  step_stopwords(lyrics) |>
  step_ngram(lyrics, num_tokens = 5L, min_num_tokens = 1L) |>
  step_tokenfilter(lyrics, max_tokens = 2000) |>
  step_tfidf(lyrics) |>
  # Simplify these names
  step_rename_at(
    all_predictors(), -starts_with("tfidf_lyrics_"),
    fn = \(x) str_glue("af_{x}")
  ) |>
  step_rename_at(starts_with("tfidf_lyrics_"),
    fn = \(x) str_replace_all(
      string = x,
      pattern = "tfidf_lyrics_",
      replacement = ""
    )
  ) |>
  # fix explicit variable to factor
  step_bin2factor(af_explicit) |>
  # normalize for penalized regression
  step_dummy(all_nominal_predictors()) |>
  step_zv(all_predictors()) |>
  step_normalize(all_numeric_predictors()) |>
  step_downsample(artist)
glmnet_rec

Tune the penalized regression model

Demonstration:

  • Define the penalized regression model specification, including tuning placeholders for penalty and mixture
  • Create the workflow object
  • Define a tuning grid with every combination of:
    • penalty = 10^seq(-6, -1, length.out = 20)
    • mixture = c(0, 0.2, 0.4, 0.6, 0.8, 1)
  • Tune the model using the cross-validation folds
  • Evaluate the tuning procedure and identify the best performing models based on ROC AUC
# define the penalized regression model specification
glmnet_spec <- logistic_reg(penalty = tune(), mixture = tune()) |>
  set_mode("classification") |>
  set_engine("glmnet")

# define the new workflow
glmnet_workflow <- workflow() |>
  add_recipe(glmnet_rec) |>
  add_model(glmnet_spec)

# create the tuning grid
glmnet_grid <- expand_grid(
  penalty = 10^seq(-6, -1, length.out = 20),
  mixture = c(0, 0.2, 0.4, 0.6, 0.8, 1)
)

# tune over the model hyperparameters
glmnet_tune <- tune_grid(
  object = glmnet_workflow,
  resamples = lyrics_folds,
  grid = glmnet_grid,
  control = control_grid(save_pred = TRUE, save_workflow = TRUE)
)
# evaluate results
collect_metrics(x = glmnet_tune)
# A tibble: 240 × 8
      penalty mixture .metric  .estimator  mean     n std_err .config           
        <dbl>   <dbl> <chr>    <chr>      <dbl> <int>   <dbl> <chr>             
 1 0.000001         0 accuracy binary     0.8      10  0.0235 Preprocessor1_Mod…
 2 0.000001         0 roc_auc  binary     0.834    10  0.0428 Preprocessor1_Mod…
 3 0.00000183       0 accuracy binary     0.8      10  0.0235 Preprocessor1_Mod…
 4 0.00000183       0 roc_auc  binary     0.834    10  0.0428 Preprocessor1_Mod…
 5 0.00000336       0 accuracy binary     0.8      10  0.0235 Preprocessor1_Mod…
 6 0.00000336       0 roc_auc  binary     0.834    10  0.0428 Preprocessor1_Mod…
 7 0.00000616       0 accuracy binary     0.8      10  0.0235 Preprocessor1_Mod…
 8 0.00000616       0 roc_auc  binary     0.834    10  0.0428 Preprocessor1_Mod…
 9 0.0000113        0 accuracy binary     0.8      10  0.0235 Preprocessor1_Mod…
10 0.0000113        0 roc_auc  binary     0.834    10  0.0428 Preprocessor1_Mod…
# ℹ 230 more rows
autoplot(glmnet_tune)

# identify the five best hyperparameter combinations
show_best(x = glmnet_tune, metric = "roc_auc")
# A tibble: 5 × 8
     penalty mixture .metric .estimator  mean     n std_err .config             
       <dbl>   <dbl> <chr>   <chr>      <dbl> <int>   <dbl> <chr>               
1 0.000001         0 roc_auc binary     0.834    10  0.0428 Preprocessor1_Model…
2 0.00000183       0 roc_auc binary     0.834    10  0.0428 Preprocessor1_Model…
3 0.00000336       0 roc_auc binary     0.834    10  0.0428 Preprocessor1_Model…
4 0.00000616       0 roc_auc binary     0.834    10  0.0428 Preprocessor1_Model…
5 0.0000113        0 roc_auc binary     0.834    10  0.0428 Preprocessor1_Model…

Fit the best model

Your turn:

  • Select the model + hyperparameter combinations that achieve the highest ROC AUC
  • Fit that model using the best hyperparameters and the full training set. How well does the model perform on the test set?
# select the best model's hyperparameters
rf_best <- fit_best(ranger_cv)

# test set ROC AUC
bind_cols(
  lyrics_test,
  predict(rf_best, new_data = lyrics_test, type = "prob")
) |>
  roc_auc(truth = artist, .pred_Beyoncé)
# A tibble: 1 × 3
  .metric .estimator .estimate
  <chr>   <chr>          <dbl>
1 roc_auc binary         0.922

Variable importance

We can examine the results of each model to evaluate which tokens were the most important in generating artist predictions. Here we use vip to calculate importance.

# extract parsnip model fit
rf_imp <- extract_fit_parsnip(rf_best) |>
  vi(method = "model")

# clean up the data frame for visualization
rf_imp |>
  # extract 20 most important n-grams
  slice_max(order_by = Importance, n = 20) |>
  mutate(Variable = fct_reorder(.f = Variable, .x = Importance)) |>
  ggplot(mapping = aes(
    x = Importance,
    y = Variable
  )) +
  geom_col() +
  labs(
    y = NULL,
    title = "Most relevant features for predicting whether\na song is by Beyoncé or Taylor Swift",
    subtitle = "Random forest model"
  )

# extract parsnip model fit
glmnet_imp <- glmnet_tune |>
  fit_best() |>
  extract_fit_parsnip() |>
  vi(method = "model", lambda = select_best(x = glmnet_tune, metric = "roc_auc")$penalty)

# clean up the data frame for visualization
glmnet_imp |>
  mutate(
    Sign = case_when(
      Sign == "NEG" ~ "More likely from Beyoncé",
      Sign == "POS" ~ "More likely from Taylor Swift"
    ),
    Importance = abs(Importance)
  ) |>
  # importance must be greater than 0
  filter(Importance > 0) |>
  # keep top 20 features for each artist
  slice_max(n = 20, order_by = Importance, by = Sign) |>
  mutate(Variable = fct_reorder(.f = Variable, .x = Importance)) |>
  ggplot(mapping = aes(
    x = Importance,
    y = Variable,
    fill = Sign
  )) +
  geom_col(show.legend = FALSE) +
  scale_fill_brewer(type = "qual") +
  facet_wrap(facets = vars(Sign), scales = "free_y") +
  labs(
    y = NULL,
    title = "Most relevant features for predicting whether\na song is by Beyoncé or Taylor Swift",
    subtitle = "Penalized regression model"
  )

sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────
 setting  value
 version  R version 4.3.1 (2023-06-16)
 os       macOS Ventura 13.5.2
 system   aarch64, darwin20
 ui       X11
 language (EN)
 collate  en_US.UTF-8
 ctype    en_US.UTF-8
 tz       America/New_York
 date     2023-11-17
 pandoc   3.1.1 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/ (via rmarkdown)

─ Packages ───────────────────────────────────────────────────────────────────
 package      * version    date (UTC) lib source
 backports      1.4.1      2021-12-13 [1] CRAN (R 4.3.0)
 bit            4.0.5      2022-11-15 [1] CRAN (R 4.3.0)
 bit64          4.0.5      2020-08-30 [1] CRAN (R 4.3.0)
 broom        * 1.0.5      2023-06-09 [1] CRAN (R 4.3.0)
 class          7.3-22     2023-05-03 [1] CRAN (R 4.3.0)
 cli            3.6.1      2023-03-23 [1] CRAN (R 4.3.0)
 codetools      0.2-19     2023-02-01 [1] CRAN (R 4.3.0)
 colorspace     2.1-0      2023-01-23 [1] CRAN (R 4.3.0)
 crayon         1.5.2      2022-09-29 [1] CRAN (R 4.3.0)
 data.table     1.14.8     2023-02-17 [1] CRAN (R 4.3.0)
 dials        * 1.2.0      2023-04-03 [1] CRAN (R 4.3.0)
 DiceDesign     1.9        2021-02-13 [1] CRAN (R 4.3.0)
 digest         0.6.33     2023-07-07 [1] CRAN (R 4.3.0)
 dplyr        * 1.1.3      2023-09-03 [1] CRAN (R 4.3.0)
 ellipsis       0.3.2      2021-04-29 [1] CRAN (R 4.3.0)
 evaluate       0.22       2023-09-29 [1] CRAN (R 4.3.1)
 fansi          1.0.5      2023-10-08 [1] CRAN (R 4.3.1)
 farver         2.1.1      2022-07-06 [1] CRAN (R 4.3.0)
 fastmap        1.1.1      2023-02-24 [1] CRAN (R 4.3.0)
 forcats      * 1.0.0      2023-01-29 [1] CRAN (R 4.3.0)
 foreach        1.5.2      2022-02-02 [1] CRAN (R 4.3.0)
 furrr          0.3.1      2022-08-15 [1] CRAN (R 4.3.0)
 future         1.32.0     2023-03-07 [1] CRAN (R 4.3.0)
 future.apply   1.11.0     2023-05-21 [1] CRAN (R 4.3.0)
 generics       0.1.3      2022-07-05 [1] CRAN (R 4.3.0)
 ggplot2      * 3.4.2      2023-04-03 [1] CRAN (R 4.3.0)
 glmnet       * 4.1-7      2023-03-23 [1] CRAN (R 4.3.0)
 globals        0.16.2     2022-11-21 [1] CRAN (R 4.3.0)
 glue           1.6.2      2022-02-24 [1] CRAN (R 4.3.0)
 gower          1.0.1      2022-12-22 [1] CRAN (R 4.3.0)
 GPfit          1.0-8      2019-02-08 [1] CRAN (R 4.3.0)
 gridExtra      2.3        2017-09-09 [1] CRAN (R 4.3.0)
 gtable         0.3.3      2023-03-21 [1] CRAN (R 4.3.0)
 hardhat        1.3.0      2023-03-30 [1] CRAN (R 4.3.0)
 here           1.0.1      2020-12-13 [1] CRAN (R 4.3.0)
 hms            1.1.3      2023-03-21 [1] CRAN (R 4.3.0)
 htmltools      0.5.6.1    2023-10-06 [1] CRAN (R 4.3.1)
 htmlwidgets    1.6.2      2023-03-17 [1] CRAN (R 4.3.0)
 infer        * 1.0.4      2022-12-02 [1] CRAN (R 4.3.0)
 ipred          0.9-14     2023-03-09 [1] CRAN (R 4.3.0)
 iterators      1.0.14     2022-02-05 [1] CRAN (R 4.3.0)
 jsonlite       1.8.7      2023-06-29 [1] CRAN (R 4.3.0)
 knitr          1.44       2023-09-11 [1] CRAN (R 4.3.0)
 labeling       0.4.2      2020-10-20 [1] CRAN (R 4.3.0)
 lattice        0.21-8     2023-04-05 [1] CRAN (R 4.3.0)
 lava           1.7.2.1    2023-02-27 [1] CRAN (R 4.3.0)
 lhs            1.1.6      2022-12-17 [1] CRAN (R 4.3.0)
 lifecycle      1.0.3      2022-10-07 [1] CRAN (R 4.3.0)
 listenv        0.9.0      2022-12-16 [1] CRAN (R 4.3.0)
 lubridate    * 1.9.3      2023-09-27 [1] CRAN (R 4.3.1)
 magrittr       2.0.3      2022-03-30 [1] CRAN (R 4.3.0)
 MASS           7.3-60     2023-05-04 [1] CRAN (R 4.3.0)
 Matrix       * 1.5-4.1    2023-05-18 [1] CRAN (R 4.3.0)
 modeldata    * 1.1.0      2023-01-25 [1] CRAN (R 4.3.0)
 modelenv       0.1.1      2023-03-08 [1] CRAN (R 4.3.0)
 munsell        0.5.0      2018-06-12 [1] CRAN (R 4.3.0)
 nnet           7.3-19     2023-05-03 [1] CRAN (R 4.3.0)
 parallelly     1.36.0     2023-05-26 [1] CRAN (R 4.3.0)
 parsnip      * 1.1.0      2023-04-12 [1] CRAN (R 4.3.0)
 pillar         1.9.0      2023-03-22 [1] CRAN (R 4.3.0)
 pkgconfig      2.0.3      2019-09-22 [1] CRAN (R 4.3.0)
 prodlim        2023.03.31 2023-04-02 [1] CRAN (R 4.3.0)
 purrr        * 1.0.2      2023-08-10 [1] CRAN (R 4.3.0)
 R6             2.5.1      2021-08-19 [1] CRAN (R 4.3.0)
 ranger       * 0.15.1     2023-04-03 [1] CRAN (R 4.3.0)
 RColorBrewer   1.1-3      2022-04-03 [1] CRAN (R 4.3.0)
 Rcpp           1.0.10     2023-01-22 [1] CRAN (R 4.3.0)
 readr        * 2.1.4      2023-02-10 [1] CRAN (R 4.3.0)
 recipes      * 1.0.6      2023-04-25 [1] CRAN (R 4.3.0)
 rlang          1.1.1      2023-04-28 [1] CRAN (R 4.3.0)
 rmarkdown      2.25       2023-09-18 [1] CRAN (R 4.3.1)
 ROSE           0.0-4      2021-06-14 [1] CRAN (R 4.3.0)
 rpart          4.1.19     2022-10-21 [1] CRAN (R 4.3.0)
 rprojroot      2.0.3      2022-04-02 [1] CRAN (R 4.3.0)
 rsample      * 1.1.1      2022-12-07 [1] CRAN (R 4.3.0)
 rstudioapi     0.14       2022-08-22 [1] CRAN (R 4.3.0)
 scales       * 1.2.1      2022-08-20 [1] CRAN (R 4.3.0)
 sessioninfo    1.2.2      2021-12-06 [1] CRAN (R 4.3.0)
 shape          1.4.6      2021-05-19 [1] CRAN (R 4.3.0)
 SnowballC      0.7.1      2023-04-25 [1] CRAN (R 4.3.0)
 stopwords    * 2.3        2021-10-28 [1] CRAN (R 4.3.0)
 stringi        1.7.12     2023-01-11 [1] CRAN (R 4.3.0)
 stringr      * 1.5.0      2022-12-02 [1] CRAN (R 4.3.0)
 survival       3.5-5      2023-03-12 [1] CRAN (R 4.3.0)
 textrecipes  * 1.0.3      2023-04-14 [1] CRAN (R 4.3.0)
 themis       * 1.0.1      2023-04-14 [1] CRAN (R 4.3.0)
 tibble       * 3.2.1      2023-03-20 [1] CRAN (R 4.3.0)
 tidymodels   * 1.1.0      2023-05-01 [1] CRAN (R 4.3.0)
 tidyr        * 1.3.0      2023-01-24 [1] CRAN (R 4.3.0)
 tidyselect     1.2.0      2022-10-10 [1] CRAN (R 4.3.0)
 tidyverse    * 2.0.0      2023-02-22 [1] CRAN (R 4.3.0)
 timechange     0.2.0      2023-01-11 [1] CRAN (R 4.3.0)
 timeDate       4022.108   2023-01-07 [1] CRAN (R 4.3.0)
 tokenizers     0.3.0      2022-12-22 [1] CRAN (R 4.3.0)
 tune         * 1.1.1      2023-04-11 [1] CRAN (R 4.3.0)
 tzdb           0.4.0      2023-05-12 [1] CRAN (R 4.3.0)
 utf8           1.2.4      2023-10-22 [1] CRAN (R 4.3.1)
 vctrs          0.6.4      2023-10-12 [1] CRAN (R 4.3.1)
 vip          * 0.3.2      2020-12-17 [1] CRAN (R 4.3.0)
 vroom          1.6.3      2023-04-28 [1] CRAN (R 4.3.0)
 withr          2.5.2      2023-10-30 [1] CRAN (R 4.3.1)
 workflows    * 1.1.3      2023-02-22 [1] CRAN (R 4.3.0)
 workflowsets * 1.0.1      2023-04-06 [1] CRAN (R 4.3.0)
 xfun           0.40       2023-08-09 [1] CRAN (R 4.3.0)
 yaml           2.3.7      2023-01-23 [1] CRAN (R 4.3.0)
 yardstick    * 1.2.0      2023-04-21 [1] CRAN (R 4.3.0)

 [1] /Library/Frameworks/R.framework/Versions/4.3-arm64/Resources/library

──────────────────────────────────────────────────────────────────────────────